(LTI Systems)

Outline

> Basic System Properties
\checkmark Memoryless and systems with memory (static or dynamic).
\checkmark Causal and Non-causal systems (Causality).
\checkmark Linear and Non-linear systems (Linearity).
\checkmark Stable and Non-stable systems (Stability).
\checkmark Time-Invariant systems (Time invariance). Basic System Properties

1. Memoryless and systems with memory (static or dynamic).
2. Causal and Non-causal systems (Causality).
3. Linear and Non-linear systems (Linearity).
4. Stable and Non-stable systems (Stability).
5. Time-Invariant systems (Time invariance).

Memoryless and systems with memory (static or dynamic):
A system is called memoryless, if the output, $\boldsymbol{y}(\boldsymbol{t})$, of a given system for each value of the independent variable at a given time t depends only on the input value at time t.
A system has memory if the output at time $\boldsymbol{t}_{\mathbf{1}}$ depends in general on the past values of the input $\boldsymbol{x}(\boldsymbol{t})$ for some range of the values of \boldsymbol{t} to $\boldsymbol{t}=\boldsymbol{t}_{\boldsymbol{1}}$. A system with memory retains or stores information about input values at times other than the current input value.
D-T signal terms:
The transformation does not depend on the previous samples of
the sequence, it is memoryless $D-T$ system

Examples:

System Name	System Equation Definition	Description		
Ideal	$y(t)=k \cdot x(t)$, Amplifier/Attenuator $y[n]=k \cdot x[n]$ where k is some real constant	Memoryless		
Integrator	$y(t)=\int_{-\infty}^{t_{1}} x(t) d t$			
Integrate the values of the input signal				
from all past times up to present time.			\quad System with memory \quad	
:---				

1. Continuous time systems:
a) $y(t)=5 \sin (t) \cdot \cos (3 t)$: This system is memoryless.
b) $y(t)=\int_{-\infty}^{t / 7} x(\tau) d \tau$

For some general input function $\boldsymbol{x}(\boldsymbol{t})$, this system is a system with memory, because it depends on all past values of the input.
c) $y(t)=\int_{t_{0}}^{t} \tau \cdot e^{-\tau} d \tau$-consider $x(t)=t \cdot e^{-t}$

Solution: we use integration by parts,

$$
\begin{aligned}
& u=\tau \Rightarrow d u=d \tau \\
& d v=e^{-\tau} \Rightarrow v=-e^{-\tau} \Rightarrow \\
& u \cdot v-\int v d u=-\left.\tau \cdot e^{-\tau}\right|_{t_{0}} ^{t}+\int_{t_{0}}^{t} e^{-\tau} d \tau= \\
& -\left.\tau \cdot e^{-\tau}\right|_{t_{0}} ^{t}-\left.e^{-\tau}\right|_{t_{0}} ^{t}=t \cdot e^{-t}+t_{0} \cdot e^{-t_{0}}-e^{-t}+e^{-t_{0}} \\
& y(t)=e^{-t_{0}}\left(1+t_{0}\right)-e^{-t}(1+t)
\end{aligned}
$$

So we have system with memory.
2. Discrete time systems:
a. $y[n]=x[n-5]$

This system in not memoryless, because the output value at \boldsymbol{n} depends on the input values at $\boldsymbol{n}-\mathbf{5}$
b. $y[n]=\sin (x[n])+5$-memoryless system.

Causal and Non-causal systems:

If the output of the system $\boldsymbol{y}(\boldsymbol{t})$ at any time depends only on the input at present and/or previous times, we say that the system is causal, mathematically this can be represented as $\boldsymbol{y}(\boldsymbol{t})=\boldsymbol{f}(\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{x}(\boldsymbol{t}-1), \ldots)$.
A noncausal system anticipates the future values of the input signal in some way.

All memoryless systems are causal

For real time system where n actually denoted time causality is important. Causality is not an essential constraint in applications where n is not time, for example, image processing. If we are doing processing on recorded data, then also causality may not be required.
Examples:

1. Continuous time systems:
a) Ideal Predictor: this system is given by the following input-output relationship $\boldsymbol{y}(\boldsymbol{t})=\boldsymbol{x}(\boldsymbol{t}+\mathbf{1})$, it is noncausal system, since the value $\boldsymbol{y}(\boldsymbol{t})$ of the output at time \boldsymbol{t} depends on the value $\boldsymbol{x}(\boldsymbol{t}+\mathbf{1})$ of the input at time $\boldsymbol{t}+\mathbf{1}$, so the output must appear before the input signal as shown in figure 3-7.

Figure 3-7: Ideal Predictor

In general, $\boldsymbol{y}(\boldsymbol{t})=\boldsymbol{k} \cdot \boldsymbol{x}(\boldsymbol{t}+\boldsymbol{q})$, where \boldsymbol{q} is a positive real number, is a noncausal system.
b) Ideal Time Delay :

The Ideal Time Delay has the following equation $\boldsymbol{y}(\boldsymbol{t})=\boldsymbol{x}(\boldsymbol{t} \mathbf{- 1})$ and this system is causal.
2. Discrete time systems:
a) N-point MA Filter:

The N-point MA Filter $y[n]=\frac{1}{N}[x[n]+x[n-1]+x[n-2]+\ldots+x[n-N+1]$ is a causal system.
b) 9-point MA Filter:

The 9-point MA Filter with the following definition:
$y[n]=\frac{1}{9}[x[n+4]+x[n+3]+x[n+2]+x[n+1]+x[n]+x[n-1]+x[n-2]+x[n-3]+x[n-4]]$ is a noncausal filter, since the filter output at time n requires the future values $x[n+4], x[n+3], x[n+2]$ and $x[n+1]$ of the input.
c) The system defined by $y[n]=\frac{\mathbf{1}}{\mathbf{2 N + 1}} \sum_{k=-N}^{N} x[n-k]$ is noncausal.
d) $y[n]=3 x[n-3]$ - is a causal, since the output value at n for the system described by $\boldsymbol{y}[\boldsymbol{n}]=\mathbf{3 x}[\boldsymbol{n}-3]$ depends on the previous values of \boldsymbol{n}.
e) $y[n]=5 x^{3}[n+3]$ - is a noncausal, since the output value n depends on the input value $\boldsymbol{n}+3$.

Linear and Non-linear systems (Linearity):

This is an important property of the system. We will see later that if we have system which is linear and time invariant then it has a very compact representation. An operator \boldsymbol{T} is called linear if the following relationships hold: $\hat{T}\left\{a x_{1}(t)+b x_{2}(t)\right\}=a \cdot \hat{T}\left\{x_{1}(t)\right\}+b \cdot \hat{T}\left\{x_{2}(t)\right\}=a \cdot y_{1}(t)+b \cdot y_{2}(t)$ for C-T signals.
Or
$\hat{T}\left\{a x_{1}[n]+b x_{2}[n]\right\}=a \cdot \hat{T}\left\{x_{1}[n]\right\}+\boldsymbol{b} \cdot \hat{T}\left\{x_{2}[n]\right\}=a \cdot y_{1}[n]+b \cdot y_{2}[n]$ for D-T signals.
To explain these relationships, suppose that T acts on two input signals $x_{1}(t)$ and $\boldsymbol{x}_{2}(t)$ to produce the following signals:
$y_{1}(t)=\hat{T}\left\{x_{1}(t)\right\}$ - The response of the system to the input $x_{1}(t)$.
and $y_{2}(t)=\hat{T}\left\{x_{2}(t)\right\}$ - The response of the system to the input $x_{2}(t)$.
And suppose that \boldsymbol{a} and \boldsymbol{b} are two constants. To get the linearity property, a linear system has the important property of superposition:
superposition
If an input consists of weighted sum of several signals ($\left.a x_{1}(t)+b x_{2}(t)\right)$, the output is also weighted sum of the responses of the system to each of those input signals $\left(a \cdot y_{1}(t)+b \cdot y_{2}(t)\right)$.
The superposition property consists of two parts:
区 Additivity: The response to $\left\{x_{1}(t)+x_{2}(t)\right\}$ is $\left\{y_{1}(t)+y_{2}(t)\right\}$.
囚 Homogeneity: The response to $a\left\{x_{1}(t)\right\}$ is $a\left\{y_{1}(t)\right\}$, where a is any real number if we are considering only real signals and \boldsymbol{a} is any complex number if we are considering complex valued signals. This means that if a system is homogeneous, then the scaled input gives a scaled output (some scaling factors).
From figure 3-8, we see that we can decompose complicated signal $\boldsymbol{x}(\boldsymbol{t})$ into a sum of simpler signals $x_{1}(t)$ and $x_{2}(t)$, and then treat each of these signals through the system.

Figure 3-8: Linearity

System linearity checks

To determine that the system is linear, use the following steps (see also the figure 3-8):

1. Form the sum $a y_{1}(t)+b y_{2}(t)$ considering two input-output relationship $y_{1}(t)$ and $y_{2}(t)$.
2. Construct the response, $\boldsymbol{T}\left\{a x_{1}(t)+b x_{2}(t)\right\}$, of the input: $a x_{1}(t)+b x_{2}(t)$.
3. Check for equality the response of step 1 with the response of step 2 , if these two responses are equal, then the system is linear.

Examples:

1. Continuous time systems:
a) $y(t)=5 x(t)$

Solution:

From step 1, we consider two inputs and output signals multiplied by scalars. Since $\boldsymbol{y}(\boldsymbol{t})=\mathbf{5} \boldsymbol{x}(\boldsymbol{t})$, we have

$$
\begin{aligned}
& y_{1}(t)=5 x_{1}(t) \\
& y_{2}(t)=5 x_{2}(t)
\end{aligned}
$$

and the sum weighted by two constants is:

$$
a y_{1}(t)+b y_{2}(t)=5 a x_{1}(t)+5 b x_{2}(t)
$$

From step 2, we use the sum

$$
\begin{gathered}
a x_{1}(t)+b x_{2}(t) \text { as an input to the system, where } \\
\hat{T}\left\{a x_{1}(t)+b x_{2}(t)\right\}=5 \cdot\left[a x_{1}(t)+b x_{2}(t)\right]=5 a x_{1}(t)+5 b x_{2}(t)
\end{gathered}
$$

From step 3, these equations are equal, and then the system is linear.
b) $\boldsymbol{y}(t)=\boldsymbol{R} \boldsymbol{x}^{\mathbf{3}}(t)$, where \mathbf{R} is a constant.

Solution:

From step 1, we have:

$$
a y_{1}(t)+b y_{2}(t)=a R x_{1}^{3}(t)+b R x_{2}^{3}(t)
$$

From step 2, we consider the transformation acting on $a x_{1}(t)+b x_{2}(t) \Rightarrow$

$$
\hat{T}\left\{a x_{1}(t)+b x_{2}(t)\right\}=R \cdot\left(a x_{1}(t)+b x_{2}(t)\right)^{3}
$$

Using $(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$ we obtain the following equation
$\hat{T}\left\{a x_{1}(t)+b x_{2}(t)\right\}=R \cdot\left(a x_{1}(t)+b x_{2}(t)\right)^{3}=R \cdot\left(a^{3} x_{1}^{3}(t)+3 a^{2} b x_{1}^{2}(t) x_{2}(t)+3 a b^{2} x_{1}(t) x_{2}^{2}(t)+b^{3} x_{2}^{3}(t)\right)$
From step 2, the system is not linear.

$$
\text { c) } y(t)=\frac{d^{2} x}{d t^{2}}
$$

Solution:

$$
a y_{1}(t)+b y_{2}(t)=a \frac{d^{2} x_{1}}{d t^{2}}+b \frac{d^{2} x_{2}}{d t^{2}}
$$

Now

$$
\hat{T}\left\{a x_{1}(t)+b x_{2}(t)\right\}=\frac{d^{2}\left[a x_{1}(t)+b x_{2}(t)\right]}{d t^{2}}=a \frac{d^{2} x_{1}(t)}{d t^{2}}+b \frac{d^{2} x_{2}(t)}{d t^{2}} \Rightarrow
$$

in this case, the system is linear, as the result of the first step and second step are equal.
2. Discrete time systems:
a) $y[n]=x[n-5]$
$T\left\{a x_{1}[n]+b x_{2}[n]\right\}=a x_{1}[n-5]+b x_{2}[n-5]=a y_{1}[n]+b y_{2}[n] \Rightarrow$ therefore $y[n]=x[n-5]$ is linear system
b) $y[n]=x[n] u[n-k], k>0$
$T\left\{a x_{1}[n]+b x_{2}[n]\right\}=a x_{1}[n] u[n-k]+b x_{2}[n] u[n-k]=a y_{1}[n]+b y_{2}[n] \Rightarrow$ linear system
Stable and Non-stable systems (Stability):
There are several definitions for stability. Here we will consider bounded input bonded output (BIBO) stability. A system is said to be BIBO stable if every bounded input produces a bounded output.
We say that a signal $\boldsymbol{x}[\boldsymbol{n}]$ is bounded if we can find a constant \boldsymbol{M} such that for all $\boldsymbol{n},|\boldsymbol{x}[\boldsymbol{n}]|<\boldsymbol{M}<\infty$, and we say that the output signal $\boldsymbol{y}[\boldsymbol{n}]$ is also bounded if we can find a constant \boldsymbol{K} such that $|\boldsymbol{y}[n]|<K<\infty$.

Examples:

a) The moving average system defined by $y[n]=\frac{1}{2 N+1} \sum_{k=-N}^{N} x[n-k]$ is stable as $y[n]$ is sum of finite numbers and so it is bounded.
b) The accumulator system defined by $y[n]=\sum_{k=-\infty}^{n} x[k]$ is unstable. If we take $x[n]=u[n]$, the unit step then $y[0]=1, y[1]=2, y[2]=3, \ldots y[n]=n+1, \quad n \geq 0$ so $y[n]$ grows without bound.
c) $y[n]=7 x[n-3]$, assume that, $x[n] \leq M$ for some finite M for all n.

In this case $x[n] \leq M$ implies that $|y[n]| \leq 7 M$, so the system is stable.
d) $y[n]=2 n x[n-1]$, assume that, $x[n] \leq M$ for some finite M for all n.

In this case, since we have $\boldsymbol{y}[\boldsymbol{n}]=\mathbf{2 n x}[\boldsymbol{n}-\mathbf{1}]$, were the output directly depends on \boldsymbol{n}, it grows without bound as \boldsymbol{n} increases, so the system is not stable.
Time-Invariant systems (Time invariance):
A system is said to be time invariance (TI) if the behavior and the structure of the system do not change with time (TI system responds exactly the same way no matter when the input signal is applied). Thus a system is said to be time invariant if a time shift (delay or advance) in the input signal, $\boldsymbol{x}(\boldsymbol{t}) \rightarrow \boldsymbol{x}(\boldsymbol{t} \pm \tau)$, leads to identical delay or advance in the output signal. Mathematically
If $\boldsymbol{y}[\boldsymbol{n}]=\boldsymbol{T}\{\boldsymbol{x}[\boldsymbol{n}]\}$ then $\boldsymbol{y}\left[\boldsymbol{n}-\boldsymbol{n}_{\mathbf{0}}\right]=\boldsymbol{T}\left\{\boldsymbol{x}\left[\boldsymbol{n}-\boldsymbol{n}_{\mathbf{0}}\right]\right\}$ for any $\boldsymbol{n}_{\mathbf{0}}$
Time invariance testing steps (see figure 3-9):

1. Find the shifted output $\boldsymbol{y}\left[\boldsymbol{n}-\boldsymbol{n}_{\mathbf{0}}\right]$ of the system.
2. Find the output of the shifted input $\boldsymbol{y}_{n 0}[n]=\boldsymbol{T}\left\{x\left[n-n_{0}\right]\right\}$.
3. Compare stepl and step 2, if they are equal, then the system is time invariance.

Figure 3-9: Time Invariance
Testing steps

Examples:

1. Continuous time systems:

Determine whether or not the system is a time-invariant for \mathbf{t}_{0} ?

$$
y(t)=t x(t)
$$

To solve this task, we go through the steps described above for time invariance testing:
Stepl: the result of the shifted output:

$$
y\left(t-t_{0}\right)=\left(t-t_{0}\right) x\left(t-t_{0}\right)
$$

Step 2: the output of the shifted input:

$$
y_{\tau}(t)=T\left\{x\left(t-t_{0}\right)\right\}=\operatorname{tx}\left(t-t_{0}\right)
$$

Step 3: Comparing the two outputs we see that they are not equal, so this system is time varying.
2. Discrete time systems:

Determine whether or not the systems are time-invariant?

a. $y[n]=7 x[n-7]$.

Solution:

Stepl: the result of the shifted output:

$$
y\left[n-n_{0}\right]=7 x\left[n-n_{0}-7\right]
$$

Step 2: the output of the shifted input:

$$
y_{n 0}=T\left\{x\left[n-n_{0}\right]\right\}=7 x\left[n-n_{0}-7\right]
$$

Step 3: Comparing the two outputs we see that they are equal, so this system is time invariant.
b. $y[n]=7 n x[n]$

Solution:

Stepl: the result of the shifted output:

$$
y\left[n-n_{0}\right]=7\left(n-n_{0}\right) x\left[n-n_{0}\right]
$$

Step 2: the output of the shifted input:

$$
y_{n 0}=T\left\{x\left[n-n_{0}\right]\right\}=7 n x\left[n-n_{0}\right]
$$

Step 3: Comparing the two outputs we see that they are not equal, so this system is time varying.
C. Accumulator system : $y[n]=\sum_{k=-\infty}^{n} x[k]$

Solution:

Stepl: the result of the shifted output is given by:

$$
y\left[n-n_{0}\right]=\sum_{k=-\infty}^{n-n_{0}} x[k]
$$

Step 2: the output of the shifted input:
$\boldsymbol{y}_{\boldsymbol{n 0}}=\boldsymbol{T}\left\{x\left[n-n_{0}\right]\right\}$, let $\boldsymbol{x}_{\mathbf{1}}[n]=\boldsymbol{x}\left[n-n_{0}\right]$, then the corresponding output is

$$
y_{1}[n]=\sum_{k=-\infty}^{n} x_{1}[k]=\sum_{k=-\infty}^{n} x[k]
$$

Step 3: Comparing the two outputs:
The two expressions are equal. To get that, let us change the index of summation by $\boldsymbol{i}=\boldsymbol{k}-\boldsymbol{n}_{\mathbf{0}}$ in the second sum then we see that

$$
y_{1}[n]=\sum_{i=-\infty}^{n-n_{0}} x[i]=y\left[n-n_{0}\right]
$$

So this system is time invariant.
A system can be linear without being time invariant and
it can be time invariant without being linear.

